Sähköpurjekolumni 28.10.2016
Voisiko sähköpurjeella helpottaa kantorakettien tehtävää eli nousemista kiertoradalle? Ei suoraan, mutta ehkä välillisesti: Haetaan sähköpurjeilla asteroideilta sopivaa raaka-ainetta kuten vettä, tuodaan se matalalle kiertoradalle, tehdään siitä rakettipolttoainetta ja suoritetaan kantoraketin kakkosvaiheen välitankkaus, jonka turvin kakkosvaihe pystyy laskeutumaan Maahan uudelleenkäyttöä varten. Uudelleen tankattu rakettivaihe suorittaa 7 km/s jarrutuspolton ja putoaa lähes pystysuoraan ilmakehään. Lämpösuojausta ei juuri tarvita, mikä pienentää kantoraketin massaa ja huoltokuluja. Tankkia ei tarvitse täyttää kokonaan, koska paluuvaiheessa kuormana on yleensä vain vaiheen oma massa ilman hyötykuormaa. Tuloksena on kokonaan uudelleenkäytettävä kantorakettijärjestelmä, jonka massasuhde ei ole juurikaan perinteistä kertakäyttöistä laukaisinta huonompi ja joka ulkoisestikin muistuttaa perinteisiä raketteja. Mutta kiertoradalla tarvitaan polttoaineen lähde.
Asteroidien lisäksi rakettipolttoainetta voidaan tuottaa yläilmakehän kaasusta. Matalalla lentävän satelliitin sopivasti muotoillussa etumaskissa voi olla törmääviä ilmamolekyylejä säiliöön keräävä tyhjiöpumppu. Laboratoriossahan tyhjiöpumppuja on monenlaisia ja niitä käytetään tyhjiön tuottamiseen, mutta nyt ollaan kiinnostuneita pumpun tuottamasta kaasusta eikä sen luomasta tyhjiöstä jota avaruudessa riittää muutenkin. Satelliitissa on lisäksi ilmaa ajoaineenaan käyttävä sähkörakettimoottori (ionimoottori tai Hall-moottori), joka kompensoi satelliitin ilmanvastuksen ja ylläpitää aluksen rataa. Euroopan avaruusjärjestö on kehittänyt tällaista ilmaa hengittävää sähkörakettia. Sähköraketin suihkun nopeus (tyypillisesti 20-40 km/s) on paljon 8 km/s ratanopeutta korkeampi, joten sähköraketti itse kuluttaa periaatteessa vain osan kerätystä ajoaineesta. Sähkörakettimoottorin ja ajoaineen välivarastona toimivan tankin avulla satelliitti voi muuttaa ratakorkeuttaan ja radan inklinaatiota. Sopivasti muotoillun rungon aerodynamiikkaa voi lisäksi käyttää hyväksi radan inklinaatiomuutosten vahvistamiseen.
Tällainen satelliitti on tavallaan 150-250 km korkeudella operoiva aurinkosähköllä toimiva lentokone, joka ei uhmaa painovoimaa siivillä vaan suuresta nopeudesta johtuvan ympyräradan keskipakoisvoiman avulla, mutta käyttää ympäröivää ohutta ilmaa työntövoiman tuottamiseen ja radan muuttamiseen.
Tekniikka mahdollistaa siis matalalla lentävän satelliitin, joka pystyy muuttamaan rataansa mielivaltaisesti eikä silti kuluta ajoainetta vaan päinvastoin voi jopa tuottaa sitä. Matala lentokorkeus tekee satelliitin immuuniksi kiertorataromulle: se ei kärsi olemassaolevasta romusta eikä tuota uutta romua. Matalasta lentokorkeudesta on lisäksi etua monissa satelliittien sovelluksissa kuten kaukokartoituksessa ja tietoliikenteessä. Tekniikan yksi mahdollinen lisäsovellus saattaisi ehkä olla kantoraketin tankkaus kiertoradalla propulsiivista paluuta varten.
Koska yläilmakehä koostuu lähinnä typestä ja hapesta, menetelmällä voi tuottaa hapetinta, mutta ei polttoainetta. Hapetin on kuitenkin polttoainetta raskaampi komponentti, joten senkin tuottamisesta paikallisesti olisi merkittävä etu. Polttoainetta täytyy nostaa perinteiseen tapaan maasta tai sitä voidaan tuoda asteroideilta sähköpurjeella ja ilmajarrutuksella.
Ei kommentteja:
Lähetä kommentti