tiistai 10. huhtikuuta 2012

Aurinkotuulitestimissio SWEST


Aurinkotuulipurje on kotonaan vapaassa aurinkotuulessa,
Maan magneettikentän vaikutusalueen ulkopuolella. Kuva: NASA
Sähköpurjekolumni 10.4.2012 

 Haemme mahdollisuutta toteuttaa sähköpurjeen aurinkotuulitestimissio. Vaihtoehtoja on suurehko määrä. Esimerkiksi voidaan rakentaa tavallinen satelliitti, jonka tehtävänä on pelkästään sähköpurjeen testaus. Tästä tehtiin viime syksynä EU-hakemus SWEST, joka ei kuitenkaan mennyt läpi. Italialaiset yrittävät nyt saada sitä läpi eri reittiä. Sähköpurjekoe voitaisiin myös asentaa osaksi jotakin toista satelliittia. Pidin tästä esityksen maaliskuussa ESA:n GSTP6-kokouksessa.

Kaikissa tapauksissa on lisäksi vaihtoehtoina käyttää pelkkiä liekoja, liekojen päissä olevia etäyksiköitä tai etäyksiköitä ja apuliekoja. Jos käytetään pelkkiä liekoja, satelliitissa täytyy olla propulsiojärjestelmä jolla tuotetaan liekojen avaamiseen tarvittava liikemäärämomentti. Jos lieat ovat 250 m pitkiä ja niitä on neljä, siihen riittää esimerkiksi sata grammaa butaania. Tätä lyhyempiä liekoja ei aurinkotuulikokeessa kannata käyttää, koska jännitteellisinä niiden ympärille muodostuva elektronivyöhyke on jo itsessään satakunta metriä leveä. Jos käytetään etäyksiköitä, nekin tarvitsevat propulsiota avausvaiheessa, mutta vähemmän koska niiden voiman varsi on liean mittainen. Etäyksikön propulsiona on tutkittu butaanimoottoria, FEEP-moottoria ja pientä fotonipurjetta.

Aurinkotuulitestimission voisi todennäköisesti tehdä kuutiosatelliitillakin, jos sen saisi jollakin keinolla aurinkotuuleen. Tähän mennessä kuutiosatelliitteja on laukaistu vasta LEO-radalle, mutta kaavailuja GTO-laukaisuista ja jopa Kuun radalle menevästä laukaisusta on näkynyt. On periaatteessa mahdollista rakentaa kuutiosatelliittiin propulsiojärjestelmä, joka pystyy nostamaan sen GTO-radalta aurinkotuuleen.

LEO, GEO ja GTO. Kuva: Basura
Yksi tällainen mahdollisuus voisi olla Cornellin yliopiston käynnistämä hanke kuutiosatelliittiin mahtuvan elektrolyysipropulsion rakentamiseksi. Elektrolyysipropulsiossa ajoaineena on vesi, jota satelliitti hajottaa elektrolyysillä vedyksi ja hapeksi käyttämällä aurinkopaneelien antamaa tehoa. Kaasut kerätään välivarastoon painesäililöihin, jotka tyhjennetään polttamalla rakettimoottorissa kun halutaan työntövoimaa.

NASA ja USA:n ilmavoimat tutkivat elektrolyysipropulsiota 1990-luvulla, mutta luopuivat leikistä jossain vaiheessa. Olen noin 5 vuotta puhunut elektrolyysipropulsion puolesta eri yhteyksissä, joten oli mukava kuulla että Cornell on tarttunut asiaan. Elektrolyysipropulsion ominaisimpulssi on parempi kuin hydratsiinilla ja lisäksi päästään eroon myrkyllisestä ja räjähdysherkästä aineesta. Haittana on ratanostoon kuluva muutaman kuukauden aika, joka on kuitenkin lyhyempi kuin ionimoottoreilla. Elektrolyysipropulsio ei tosin taivu pitkään yhtenäiseen polttoon, joten se ei toimi planeettaluotaimen perinteisen tyylisessä lähettämisessä. Mutta planeettaluotaimethan voivat käyttää sähköpurjetta heti noustuaan aurinkotuuleen. Ehkä tulevaisuudessa satelliitteja siirtelevät elektrolyysialukset tankkaavat asteroideilta peräisin olevaa vettä, joka on tuotu maan kiertoradalle sähköpurjeilla.

Jos GTO-kuutiosatelliittilaukaisuja on tulossa, sähköpurjeen aurinkotuulitestimissiossa meidän täytyy nousta vain GTO-radalta aurinkotuuleen, johon tarvittava impulsiivinen delta-v on noin 500 m/s. Siihen saattaisi riittää ESAIL-hankkeessa kehitettävä butaanimoottori, jos satelliitin muut osat saadaan keveiksi tai jos käytettävissä on isompi kuin kolmen yksikön kuutiosatelliitti.

Pekka Janhunen

sunnuntai 8. huhtikuuta 2012

Irti rakettiyhtälöstä ajoaineettomilla propulsiomenetelmillä

Rakettiyhtälöstä on avaruustoiminnassa iso haitta. Katsaus ajoaineettomiin menetelmiin on siis paikallaan. Avaruuskelpoinen tyhjiöpumppu ja muuta jännää on luvassa.

Fotonipurje

Aurinkopurje on laaja ja ohut heijastava kalvo, joka pysyy auki keskipakoisvoiman tai pitkien tankojen avulla. Jos halutaan hyvä suorituskyky, kalvon pitäisi olla varsin ohut. Fotonipurje toimii kaikkialla missä aurinko paistaa, mutta työntövoima vähenee auringosta mitatun etäisyyden neliössä. Alle noin 700 km korkeudella ilmanvastus voittaa säteilypaineen, joten fotonipurje on nostettava korkeammalle aloitusradalle.
Oma näkemykseni on että pyörivät heliogyro-tyyppiset purjeet olisivat levypurjeita kiinnostavampia, koska niissä kalvoja ei tarvitse taitella vaan ainoastaan rullata, koska niiden työntövoiman suuntaa ja suuruutta voidaan säätää monipuolisemmin ja koska purjekalvot saadaan kauemmas pääaluksesta niin että ne eivät häiritse radioliikennettä ja tiedeinstrumentteja.

Sähköpurje

Sähköpurje koostuu ohuista varatuista metallilangoista, jotka poikkeuttavat aurinkotuulen protoneja suunnastaan ja siten saavat niiltä liikemäärää. Sähköpurje toimii kaikkialla minne aurinkotuuli puhaltaa, eli kaikkialla aurinkokunnassa paitsi Maan ja jättiläisplaneettojen magnetosfäärien sisällä. Työntövoima vähenee kääntäen verrannollisena auringosta mitattuun etäisyyteen eli hitaammin kuin fotonipurjeella. Työntövoiman suuntaa voidaan säätää hieman rajoitetummin kuin fotonipurjeessa, mutta toisaalta sen suuruutta voidaan säätää rajattomasti nollan ja maksimiarvon välillä. Arvioiden mukaan sähköpurjeen työntövoima suhteessa laitteen painoon on huomattavan suuri. Työntövoimaa ei tosin pystytä arvioimaan kovin tarkasti teoreettista tietä ja työntövoimamittausta aurinkotuulessa ei ole vielä tehty.

Sähködynaaminen lieka

Sähködynaamisella liealla voi nostaa tai laskea LEO-satelliitin rataa. Jos rataa nostetaan, laite kuluttaa sähkötehoa, jos sitä lasketaan, se toimii generaattorina. Jos lieka on painovoimastabiloitu eli roikkuu satelliitista kohti maata tai maasta poispäin, laite toimii kuvatulla tavalla vain päiväntasaajaradalla, koska muilla radoilla liekaan kohdistuva magneettinen voima muuttaa myös radan inklinaatiota. Jos lieat pyörivät kuten sähköpurjeessa, sitä voi käyttää monipuolisemmin myös muilla kiertoradoilla.
Peikkona sähködynaamisessa lieassa on että jos lieka katkeaa, irronneesta pätkästä tulee ikävä avaruusromu, joka tosin putoaa alas tyypillisiä satelliitteja nopeammin. Mitä matalampi ratakorkeus, sitä pienempi ongelma tämä on.
Sähköstaattinen lieka eli plasmajarru on niin ohut että se ei uhkaa muita satelliitteja. Menetelmä sopii pieniin satelliitteihin ja nimensä mukaisesti sillä voi vain jarruttaa, ei kohottaa rata. Plasmajarrun käyttämä fysikaalinen periaate on läheistä sukua sähköpurjeelle.

Asteroidivesi

Hiiliasteroidit sisältävät vesijäätä, jota on periaatteessa suoraviivaista louhia lämmittämällä. Vettä voitaisiin kuljettaa maan kiertoradalle sähköpurjeilla. Jos vesipitoinen asteroidi on riittävän lähellä Maata, rakettityypisetkin propulsiomenetelmät saattaisivat olla riittävän taloudellisia. Maan kiertoradalla vettä voidaan tankata elektrolyysipropulsioalukseen, joka sitten pystyy siirtelemään satelliitteja radalta toiselle. MEO- ja GEO-radat ovat valitettavasti välialuetta, joka on elektrodynaamiselle liealle liian korkea ja sähköpurjeelle liian matala. Ajoaineettomista menetelmistä siellä toimii vain fotonipurje, joka on kuitenkin varsin hidas eikä toimi ilmanvastuksen takia matalimmilla radoilla. Elektrolyysiraketit olisivat satelliittien siirtelyyn sangen hyödyllisiä, kunhan halpaa asteroidivettä olisi saatavissa kiertoradalla. Siirto niillä kestäisi tyypillisesti muutaman kuukauden, mikä on nopeampi kuin ionimoottorilla vaikkakin hitaampi kuin hydratsiinilla.

Ilmakehän ionimoottori

ESA:n GOCE-painovoimasatelliitti lentää matalalla ja ylläpitää ratakorkeuttaan ionimoottorilla. Ei tarvitsisi muuta kuin varustaa satelliitin keula muotoillulla aukolla ja tyhjiöpumpulla, niin se voisi imeä tarvitsemansa ajoaineen ilmakehästä. Konseptia on mietitty ESA:ssa. Hall-moottorin sisus on boorinitridiä, joten typen pitäisi kelvata ajoaineeksi ilman korroosio-ongelmaa. Hapen erottamiseen typestä on useita keinoja, tai ehkä ionimoottori sietää happeakin. Koska ionimoottorin suihkun nopeus on tyypillisesti 30 km/s, satelliitti tarvitsee vain osan keräämästään kaasusta radan ylläpitoon. Ylijäämä voidaan säilöä tankkiin joka mahdollistaa nousun ylemmälle radalla. Matalalla radalla satelliittiin kohdistuu merkittävä aerodynaaminen voima, joten satelliitti voi muuttaa myös inklinaatiotaan. Saadaan siis alus joka pystyy muuttamaan kiertorataansa rajattomasti, kunhan muistaa käydä välillä lentämässä matalalla radalla tankkaamassa. Sivutuotteena saadaan happea, jota voi käyttää kemiallisessa raketissa jos on tarpeen tehdä nopeampi manööveri. Poltettava aine joudutaan tosin silloin tuomaan muualta, todennäköisesti maasta.
Kuulostaa liian hyvältä ollakseen totta, joten jossain on varmaankin tekninen pullonkaula. Ehkä riittävän monta kuutiometriä sekunnissa siirtävä tyhjiöpumppu painaa liikaa.

Pekka Janhunen