maanantai 30. lokakuuta 2017

Sähköpurjekolumni 44

Sähköpurjekolumni 30.10.2017

Pari kolumnia sitten kerroin että ESA:n tiedeohjelma valitsi helmikuussa 2017 sähköpurjeeseen perustuvan Multi asteroid touring -ehdotuksemme jatkokehitykseen "Call for new ideas" -kutsusta. Ehdotuksessamme 50 piensatelliitin parvi lennätetään yksiliekaisilla sähköpurjeilla tekemään asteroidien ohilentoja niin että saadaan lähikuvia 300 asteroidista. Nyt kuitenkin ESA sotkeutui pasmoissaan ja selvittääkin jotakin aivan muuta, eli yhden asteroidin tutkimista tutkalla. Sellaisellekin toki löytyy tiedeyhteisöstä tukea, kun kysytään sopivilta henkilöiltä. Mutta on outoa että ensin kootaan 27-jäseninen professoriraati iteroimaan ja valitsemaan 26 saapuneesta ehdotuksesta kolme parasta, sitten yhden niistä eli sen ainoan aurinkokuntaehdotuksen kohdalla aihe korvataankin yllättäen mustalla hevosella, joka ei sitäpaitsi ole mikään uusi idea koska lensi jo Rosettassa.

ESA:han toisaalta rahoittaa sähköpurjeen avulla tehtävän asteroidimission tutkimustamme jo 2016 alusta alkaen. Nyt oli kyse siitä että ESA:n Concurrent Design Facility -tiimi olisi myös osaltaan katsonut teknistä toteutettavuutta noin neljän viikon ajan.

Löytyisiköhän järkevyyttä muualta maailmankaikkeudesta? SETI-hankkeet ovat etsineet radioviestejä, mutta mitään ei ole toistaiseksi löytynyt. Samaan aikaan oma radiovuotomme on pienentynyt, kun yleisradiotyyppiset voimakkaat lähettimet vähenevät ja heikkotehoiset kännykät ja WLAN-verkot yleistyvät. Jos muukalaiset tekevät samoin, niiltä ei vuoda radiosignaaleita.

On teoriassa mahdollista että muukalaiset suuntaisivat radioviestin tarkoituksella meille. En pidä sitä kuitenkaan todennäköisenä, koska samalla he tulisivat paljastaneeksi meille oman olinpaikkansa, eikä myöskään todennäköisyys että vastaisimme jotain ymmärrettävää olisi kovin korkea.  Nimittäin ehkä emme huomanneet viestiä tai olimme varovaisia ja päätimme olla vaiti. Parhaassakin tapauksessa pitkä kommunikaatioviive tekisi dialogista hitaan.

Jos on mahdollista tehdä tähtienvälisiä luotaimia, niiden käyttäminen tuntuu radiota houkuttelevammalta vaihtoehdolta. Näin pohti kaukonäköinen herra Bracewell vuonna 1960. Luotain ei paljasta lähettäjänsä olinpaikkaa ja se voi vuorovaikuttaa löytämiensä älykkäiden olentojen kanssa lähietäisyydeltä käyttäen tekoälyään. Toisin kuin radioviestissä, vuorovaikutus voi olla hienotunteisempaa: lähettäjä voi säätää vaikuttaako operaatio kohdelajin maailmankuvaan vähän, paljon tai ei ollenkaan.

Entä motivaatio? Muukalaiset halunnevat olla selvillä galaksin muista teknisistä lajeista - kenties uteliaisuuttaan, ja koska varuillaanolo on järkevää. Vapaatahtoisten lajien käytöksen ennustaminen on vaikeampaa kuin luonnonilmiöiden, joten ne voivat olla uhka, toisaalta ehkä myös mahdollisuus.

Suuri matkanopeus ei ole välttämätön, mutta tähtienvälisen älyluotaimen on oltava pitkäikäinen ja itseään korjaava, jotta se selviytyy matkasta ja jaksaa valvoa kohteensa kehitystä kauan. Mikään luonnonlaki ei kai varsinaisesti estä sellaisen rakentamista.  Jos vanhat sivilisaatiot osaavat kaiken mahdollisen, niin ehkä silloin myös tuon. Vanha sivilisaatio on toisaalta se minkä todennäköisimmin tapaamme. Olisihan nimittäin harvinainen sattuma, jos joku naapuri olisi teknistynyt juuri samalla vuosituhannella kuin me.

Voi olla jopa todennäköistä että jos galaksissa on yksikin pitkäikäinen tekninen laji, se on ulottanut havaintoverkkonsa meidänkin aurinkokuntaamme jo miljoonia tai miljardeja vuosia sitten. Siinä tapauksessa paikallinen päivystävä älyluotain lienee jo noteerannut ihmislajin teknistymisen, ja tieto siitä leviää nyt valon nopeudella pitkin galaksin kattavaa linkkiasemaverkkoa.

Entä Fermin paradoksi: jos yksikin vanha sivilisaatio on olemassa, miksei se olisi lisääntynyt ja täyttänyt galaksia? Mikseivät ne asuta myös Maata ja miksei Dysonin palloja näy? No, Maata ne eivät asuta varmaankaan siksi että tekninen laji ei viihdy luonnonkatastrofien ja sään pieksemillä planeetoilla, vaan keinotekoisilla avaruusasemilla joita voi rakentaa mihin tahansa missä on pienkappaleita raaka-aineeksi. Avaruusasemat eivät myöskään tarvitse tähteä, vaan ainoastaan vetyä tai muuta ydinpolttoainetta jota voi kuluttaa omaan tahtiin. Kiinnostavia paikkoja muukalaisille saattavat olla esimerkiksi epäonnistuneita tähtiä ympäröivät aurinkokunnat. Pimeän epäonnistuneen tähden yläilmakehästä voi napata vetyä ellipsiradalla olevalla aluksella. Kun galaksin viimeinen punainen kääpiötähti on sammunut joskus kymmenien tuhansien miljardien vuosien kuluttua, epäonnistuneita tähtiä hyödyntävä sivilisaatio on vasta elinkaarensa alkumetreillä.

NASA:n PSOJ318.5-22 juliste "Where the nightlife never ends"

torstai 31. elokuuta 2017

Sähköpurjekolumni 43

Sähköpurjekolumni 31.8.2017

Sähköpurjeella Kuuhun meneminen on vähän kuin menisi lentäen Malmilta Helsinki-Vantaalle. Mutta yksi haaste kuututkimuksessa on että Kuuta kiertävät radat tuppaavat olemaan epästabiileja koska Kuun painovoimakenttä on niin kuoppainen. Kuuta kiertävät alukset tarvitsevat jatkuvaa propulsiota radan ylläpitoon, ja sähköpurje voisi soveltua siihen. Kuun lähellä painovoimagradientti voi tosin häiritä pyörivää moniliekaista sähköpurjetakilaa, mutta jos alus on pienehkö, voidaan käyttää yksiliekaista laitetta jossa lieka roikkuu pystysuorassa painovoimagradientin avulla. Eli samanlainen järjestely kuin perusplasmajarrussa.

Magneettikenttää Kuulla ei juuri ole, joten sähköpurjeen tarvitsema aurinkotuuli pääsee Kuun pintaan asti. Yöpuoli on tosin aurinkotuulen katveessa, mutta ratakorjauksiin riittää päiväpuolenkin propulsio. Ratakierroksellaan Kuu viettää 2/3 ajasta aurinkotuulessa ja loput Maan magnetosfäärin sisällä, jossa plasmavirtaus on erilaista. Tuo reilun viikon mittainen magnetosfäärikatve ei ole radan ylläpidon kannalta vielä ongelma.

ESA pyysi viime vuonna ehdotuksia Kuuta kiertäviksi cubesateiksi, ja laadimme suunnitelman jossa 3-U cubesat kuvaa Kuun pimeän puolen mikrometeorivälähdyksiä ja ylläpitää matalaa kiertorataansa yksiliekaisen sähköpurjeen avulla. Ehdotustamme ei valittu, mutta sen sijaan he valitsivat toisen jossa oli sama tiedepäämäärä, eli Kuun pinnan käyttäminen mikrometeoroididetektorina. Siinä rata oli korkeampi koska sähköpurjetta ei ollut käytössä ja kamera ja alus vastaavasti paljon painavampia kuin meillä.

Kuu on toisaalta houkutteleva ja toisaalta vaikea paikka toimia. Kuu on ainoa taivaankappale joka on niin lähellä että Maasta käsin voidaan teleoperoida robottia siedettävällä kahden sekunnin viiveellä. Siinä mielessä se olisi hyvä paikka harjoitella esimerkiksi asteroidien kaivostoimintaa. Mutta suuri lämpötilaero päivän ja yön välillä sekä yön pitkä kesto ovat haasteita varsinkin pienille laskeutujille. Myös liikennöinti Kuuhun on kallista, koska laskeutuminen ja nousu vaativat kemiallisen raketin ja Kuusta on vaikea löytää polttoainetta tankattavaksi. Napojen huippukylmissä auringottomissa kraattereissa vesijäätä tosin ilmeisesti on. Uusille keksinnöille olisi tilausta kuuasioissa.




keskiviikko 14. kesäkuuta 2017

Akatemian huippuyksikkö

Sähköpurje ja plasmajarru ovat osa tulevaa Suomen Akatemian huippuyksikköä, joka tutkii kestävää avaruustoimintaa. Tämä tarkoittaa että sähköpurjeen perusrahoitus on turvattu vuosiksi eteenpäin ja voimme suunnitella toimintaa entistä vapaammin ja pitkäjänteisemmin. Huippuyksikkörahoitukseen kuuluu myös cubesattien laukaisuja.

maanantai 27. maaliskuuta 2017

Sähköpurjekolumni 42

Sähköpurjekolumni 27.3.2017

ESA:n tiedeohjelma valitsi sähköpurjeeseen perustuvan asteroidimissioideamme jatkokehitykseen. ESA pyysi 2016 ehdotuksia uusiksi tiedeohjelman missioideoiksi (Call for new ideas). Ehdotuksia saapui Euroopasta 26 kappaletta ja ESA valitsi jatkoon kolme: yhden kvanttifysiikan peruslakeja tutkivan hankkeen, yhden tähtien tarkkoja paikkoja mittaavan ehdotuksen, sekä meidät.

Ehdotuksemme on lähettää parvi 4-5 kg painoisia yksiliekaisia aluksia tekemään asteroidien ohilentoja. Kukin alus koukkaa sähköpurjettaan käyttäen asteroidivyöhykkeen kautta ja tekee matkallaan 6-7 asteroidin ohilentoa. Missio kestää vähän yli kolme vuotta, ja lopuksi alukset lentävät Maan läheltä jotta flash-muistiin talletettu data saadaan siirrettyä maahan. Jos aluksia on esimerkiksi 50, niiden laukaisemiseen sopii PSLV-raketti ja saadaan tutkittua yli 300 asteroidia. Ohilentoetäisyys on noin 1000 km. Aluksissa on pieni 4 cm halkaisijainen teleskooppi ja spektrometri joilla asteroidien pinnanmuodot kuvataan ja niiden mineraalikoostumus mitataan. Samaa teleskooppia käytetään myös autonomiseen navigointiin käyttäen apuna tunnettuja asteroideja. Teleskoopin suuntaaminen kohti asteroideja onnistuu, koska lieka on kiinnitetty aluksen massakeskipisteeseen. Aluksen ja sen toisessa päässä olevan kiinteän teleskoopin voi siis suunnata kohteeseen reaktiopyöriä käyttämällä ilman että lieka sitä suuremmin häiritsee.

Ehdotuksemme on kustannustehokas tapa hankkia dataa asteroideista tieteen, vaarallisten asteroidien torjunnan ja asteroidien kaivostoiminnan tarpeisiin. PSLV-laukaisu maksaa 20 miljoonaa ja koko missio 50-150 miljoonaa riippuen kuka sen toteuttaa. Yhden asteroidin lähikuvat maksavat siis vain muutaman sata tuhatta euroa ja ne saa kolmen vuoden päästä laukaisusta. Missioarkkitehtuuri on myös hyvin skaalautuva, koska alusten lukumäärä voi olla periaatteessa mikä tahansa. Laukaiseminen on joustavaa ja onnistuu myös pienemmissä paloissa oheishyötykuormina, jos niin halutaan.  Sähköpurjelieka on uutta tekniikkaa jonka luotettavuudesta ei ole vielä käytännön kokemusta, mutta koska aluksia on paljon, missio onnistuu vaikka osa aluksista pettäisi.  Lisäksi koska yhdessä aluksessa on vain yksi lieka, luotettavuus per alus on periaatteessa korkeampi kuin moniliekaisessa purjeessa.

ESA järjestää ehdotuksemme ympärille kesällä kutsukokouksen, johon saapuu eurooppalaisia asteroiditutkijoita ja muita asiantuntijoita. ESA aikoo tiedottaa asiasta julkisesti kokouksen jälkeen.

Ehdotuksemme nimi oli vähän arkipäiväisesti Multi-asteroid touring. Nasevampi nimi on mietinnässä.  Yksi ehdotus on TOURIST. Avaruusturismia tämäkin!

tiistai 24. tammikuuta 2017

Sähköpurjekolumni 41

Lennokkikerholla aurinkokuntaan?

Sähköpurjekolumni 24.1.2017

Avaruustoiminta on kallista koska propulsio maksaa.  Esimerkiksi hydratsiinin käsittelyn vaatiman infrastruktuurin ylläpito maksaa organisaatiolle noin 2 miljoonaa vuodessa. Kiinteä moottori on yksinkertainen, mutta ennen pääsyä kantoraketin kyytiin se on todistettava turvalliseksi monin kokein ja analyysein. Sähkörakettimoottorissa puolestaan hintaa nostavat kehitystyössä tarvitut pitkät kokeet isoissa tyhjiökammioissa sekä ajoaine ksenonin korkea hinta. Lisäksi jos sähköraketilla noustaan LEO:ta korkeammalle radalle, hyötykuorma joutuu viettämään pitkähkön ajan säteilyvyöhykkeissä, mikä lisää elektroniikan kustannuksia tai säteilysuojamassaa.

Sähköpurje voi ratkaista propulsiokysymykset aurinkokuntalennoissa, mutta ensin aluksen on päästävä magnetosfäärin ulkopuolelle aurinkotuuleen.

Tietenkin avaruustoiminta halpenee myös jos kantorakettipropulsio halpenee. Pienten alusten pulmana on kuitenkin myös pienten kantorakettien puuttuminen markkinoilta. Pieniä aluksia tarvitaan jotta uudet pienet toimijat pääsevät markkinoille uusilla teknologioillaan.

Hybridiraketti on yksi tapa ratkaista näitä ongelmia. Hybridimoottorin polttoaine on vaaratonta, esimerkiksi muovia tai parafiinivahaa. Hapettimena voi olla esimerkiksi nestehappi tai typpitetroksidi. Typpitetroksidi on myrkyllistä mutta ei kuitenkaan karsinogeenistä, ja typpitetroksiditankki ei voi räjähtää itsestään koska aine ei sisällä kemiallista energiaa. Puhdas typpitetroksidi voi säilyä tankissa huoneenlämpötilassa pitkän ajan ja sitä käytetään perinteisessä tekniikassa hydratsiinin hapettimena. Uudempi hybridirakettien ehdotettu polttoainesekoitus "Nytrox" on nestehapen ja nestemäisen ilokaasun seos. Sen suorituskyky on jonkin verran nestehappea huonompi, mutta säilytyslämpötila -40..-60 C on helpompi kuin nestehapella. Nytroxin pitäisi myös olla puhdasta ilokaasua turvallisempaa, koska tankkiin muodostuva höyry ei ole ilokaasua vaan happea.

Hyvin pientä hybridirakettia voisi käyttää ratamuutokseen esimerkiksi seuraavasti. GTO-radalle laukaistaan jonkin ison kantoraketin oheishyötykuormana cubesat.  Alus tuottaa hybridimoottorillaan 500 m/s nopeusmuutoksen, mikä nostaa radan ylimmän pisteen aurinkotuuleen. Siellä alus avaa yksiliekaisen sähköpurjeen ja purjehtii ottamaan lähikuvia asteroideista esimerkiksi asteroidien kaivosfirman tarpeisiin. Data siirretään maahan suorittamalla lopuksi Maan ohilento. Alus olisi mahdollista rakentaa lähes harrastelijavoimin. Jos lisätään aurinkopaneelien pinta-alaa ja pidennetään mission kesto kahdeksaan vuoteen, alus voisi käydä jopa ottamassa kuvia jostain troijalaisasteroidista ja tehdä tiedehistoriaa. Troijalaisten koostumus kertoo nimittäin aurinkokunnan historiasta eli siitä miten planeetat päätyivät nykyisille radoilleen.

Toinen moderni vaihtoehto on monopropellanttimoottori, jossa perinteinen hydratsiini on korvattu jollain turvallisemmalla kemikaalilla. Kaikki monopropellantit ovat kuitenkin määritelmän mukaan energeettisiä yhdisteitä jotka voivat ainakin teoriassa räjähtää myös itsestään. DARPA lopettikin vuonna 2015 turvallisuussyistä ALASA-ohjelmansa, jonka tavoitteena oli käyttää erästä uutta monopropellanttia kantoraketissa. Ruotsalainen ECAPS-firma sen sijaan jatkaa oman monopropellanttinsa kaupallistamista ja on jo testannut sitä onnistuneesti kiertoradalla.

Olisiko tuon pienen sähköpurjeluotaimen laukaiseminen mahdollista pienellä hybridikantoraketilla, esimerkiksi sillä North Starilla jota norjalaiset kehittävät?  Periaatteessa kyllä. Esimerkiksi kiinteää rakettia käyttävän lentokoneesta laukaistavan Pegasus-raketin hyötykuormasuhde LEO:lle on noin kaksi prosenttia (hyötykuorma on 443 kg ja lähtömassa 23 tonnia). Suunnilleen sama massasuhde pätee pienelle hybridiraketillekin: hybridin ominaisimpulssi on hieman kiinteää korkeampi, mutta toisaalta pieni koko alentaa ominaisimpulssia hieman. Esimerkiksi jos kantoraketin lähtöpaino olisi yksi tonni, LEO:lle päätyisi 20 kg kuorma ja pakoradalle noin 5 kg paketti, mikä riittäisi pienen aurinkokuntaluotaimen massaksi. Tonnin painoinen kantoraketti voitaisiin laukaista esimerkiksi Hornet-hävittäjän ripustimesta.  Innostuisikohan Ilmavoimat piensatelliittien laukaisemisesta?

sunnuntai 15. tammikuuta 2017

Aulis-sammakko

Pienen piirin kulttimaineeseen nousseen fiktiivisen Aulis-sammakon tarinaa pääsee nyt seuraamaan avoimessa netissä. Auliksen huimiin seikkailuihin liittyy myös sähköpurje tavalla tai (enimmäkseen) toisella. Mitään Aulis-sammakon kaltaista ei ole ennen kirjoitettu, eikä ehkä tulla kirjoittamaankaan...

Tästä Auliksen matkaan: http://aulissammakko.blogspot.fi

"Katsokaas kun minussa on vielä toinenkin jännä puoli. Minä en ole ihan sellainen sammakko joita te olette ehkä nähneet kesämökin kuistin alla. Minä tulen kaukaa Etelä-Amerikasta ja minä olen vähän hallusinogeeninen."

perjantai 28. lokakuuta 2016

Sähköpurjekolumni 40

Sähköpurjekolumni 28.10.2016

Voisiko sähköpurjeella helpottaa kantorakettien tehtävää eli nousemista kiertoradalle? Ei suoraan, mutta ehkä välillisesti: Haetaan sähköpurjeilla asteroideilta sopivaa raaka-ainetta kuten vettä, tuodaan se matalalle kiertoradalle, tehdään siitä rakettipolttoainetta ja suoritetaan kantoraketin kakkosvaiheen välitankkaus, jonka turvin kakkosvaihe pystyy laskeutumaan Maahan uudelleenkäyttöä varten. Uudelleen tankattu rakettivaihe suorittaa 7 km/s jarrutuspolton ja putoaa lähes pystysuoraan ilmakehään. Lämpösuojausta ei juuri tarvita, mikä pienentää kantoraketin massaa ja huoltokuluja.  Tankkia ei tarvitse täyttää kokonaan, koska paluuvaiheessa kuormana on yleensä vain vaiheen oma massa ilman hyötykuormaa. Tuloksena on kokonaan uudelleenkäytettävä kantorakettijärjestelmä, jonka massasuhde ei ole juurikaan perinteistä kertakäyttöistä laukaisinta huonompi ja joka ulkoisestikin muistuttaa perinteisiä raketteja.  Mutta kiertoradalla tarvitaan polttoaineen lähde.

Asteroidien lisäksi rakettipolttoainetta voidaan tuottaa yläilmakehän kaasusta. Matalalla lentävän satelliitin sopivasti muotoillussa etumaskissa voi olla törmääviä ilmamolekyylejä säiliöön keräävä tyhjiöpumppu. Laboratoriossahan tyhjiöpumppuja on monenlaisia ja niitä käytetään tyhjiön tuottamiseen, mutta nyt ollaan kiinnostuneita pumpun tuottamasta kaasusta eikä sen luomasta tyhjiöstä jota avaruudessa riittää muutenkin. Satelliitissa on lisäksi ilmaa ajoaineenaan käyttävä sähkörakettimoottori (ionimoottori tai Hall-moottori), joka kompensoi satelliitin ilmanvastuksen ja ylläpitää aluksen rataa. Euroopan avaruusjärjestö on kehittänyt tällaista ilmaa hengittävää sähkörakettia. Sähköraketin suihkun nopeus (tyypillisesti 20-40 km/s) on paljon 8 km/s ratanopeutta korkeampi, joten sähköraketti itse kuluttaa periaatteessa vain osan kerätystä ajoaineesta. Sähkörakettimoottorin ja ajoaineen välivarastona toimivan tankin avulla satelliitti voi muuttaa ratakorkeuttaan ja radan inklinaatiota. Sopivasti muotoillun rungon aerodynamiikkaa voi lisäksi käyttää hyväksi radan inklinaatiomuutosten vahvistamiseen.

Tällainen satelliitti on tavallaan 150-250 km korkeudella operoiva aurinkosähköllä toimiva lentokone, joka ei uhmaa painovoimaa siivillä vaan suuresta nopeudesta johtuvan ympyräradan keskipakoisvoiman avulla, mutta käyttää ympäröivää ohutta ilmaa työntövoiman tuottamiseen ja radan muuttamiseen.

Tekniikka mahdollistaa siis matalalla lentävän satelliitin, joka pystyy muuttamaan rataansa mielivaltaisesti eikä silti kuluta ajoainetta vaan päinvastoin voi jopa tuottaa sitä. Matala lentokorkeus tekee satelliitin immuuniksi kiertorataromulle: se ei kärsi olemassaolevasta romusta eikä tuota uutta romua. Matalasta lentokorkeudesta on lisäksi etua monissa satelliittien sovelluksissa kuten kaukokartoituksessa ja tietoliikenteessä. Tekniikan yksi mahdollinen lisäsovellus saattaisi ehkä olla kantoraketin tankkaus kiertoradalla propulsiivista paluuta varten.

Koska yläilmakehä koostuu lähinnä typestä ja hapesta, menetelmällä voi tuottaa hapetinta, mutta ei polttoainetta.  Hapetin on kuitenkin polttoainetta raskaampi komponentti, joten senkin tuottamisesta paikallisesti olisi merkittävä etu. Polttoainetta täytyy nostaa perinteiseen tapaan maasta tai sitä voidaan tuoda asteroideilta sähköpurjeella ja ilmajarrutuksella.

torstai 15. syyskuuta 2016

ESA:n rahoittama plasmajarruhanke alkoi

Eilen (14.9.2016) pidettiin ESA:n rahoittaman plasmajarrun kehityshankkeen aloituskokous. Hanke on lyhyt ja intensiivinen ja sisältää myös kaksi työrupeamaa ESTEC:ssä jossa laitteen vaatimuksia ja toteutustapoja puidaan isommassa insinööritiimissä jossa ovat mukana me, ESA ja niinsanotut suurten systeemien integroijafirmat Airbus, Thales Alenia Space ja OHB.

tiistai 23. elokuuta 2016

Sähköpurjekolumni 39

Sähköpurjekolumni 23.8.2016

Lähetämme syyskuussa ESA:lle ehdotuksen, jossa sähköpurjeilla varustettu cubesat-laivasto tutkii satoja asteroideja lentämällä niiden ohi pienen kameran kanssa. Kukin alus on varustettu yhdellä 10-20 km pitkällä sähköpurjeliealla ja lentää usean asteroidin ohitse. Ohilennon data talletetaan aluksen flash-muistiin. Lopuksi kukin alus suorittaa Maan ohilennon, jonka aikana kaikki kertyneet datat siirretään maa-asemalle. Lento asteroidivyöhykkeen läpi tapahtuu autonomisesti käyttäen navigointiin lähiasteroideja. Asteroidien kaukokartoitus- ja navigointi-instrumentti on Aalto-1:ssä lentävän VTT:n spektrikameran perillinen jota VTT kehittää tällä hetkellä eteenpäin myöskin ESA:n AIM-nimistä asteroidimissiota varten. Lennon tuloksena tulemme näkemään satoja asteroideja lähikuvissa ja voimme lisäksi saada selville niiden pinnan mineraalikoostumuksen infrapunaspekristä. Jos cubesat-laivastossa on esimerkiksi 50 alusta, se voidaan laukaista esimerkiksi intialaisten PSLV-kantoraketilla, joka jaksaa nostaa pakoradalle noin 500 kg kuorman.

Sähköpurje mahdollistaa tämän uudentyyppisen asteroidien tutkimusmenetelmän. Lisäksi mahdollistajia ovat flash-muistien kasvanut datatiheys sekä kameratyyppisten instrumenttien minityrisoituminen. Datan tallentamista luotaimeen tarvitaan, sillä jos laivaston kaikkiin aluksiin pidettäisiin jatkuvaa radioyhteyttä, operointikulut nousisivat korkeiksi ja aluksissa pitäisi myös olla jonkinlainen suunnattava high gain -antenni. Jos puolestaan kamera olisi painavampi, alukset tarvitsisivat moniliekaisen sähköpurjeen ja aluksia mahtuisi kyytiin vähemmän. Moniliekaisen sähköpurjeen tapauksessa kamerainstrumentti pitäisi lisäksi todennäköisesti asentaa kääntyvälle alustalle, jotta se voisi nähdä asteroidin riippumatta pääaluksen asennosta joka seuraa liekatakilan asentoa. Yksiliekaisessa aluksessa tilanne on helpompi koska itse alusta voidaan käännellä riippumatta liean orientaatiosta. Silloin kamerateleskooppi voidaan asentaa kiinteästi 3-U cubesatpötkön toiseen päähän.

Kutsu johon ehdotuksemme menee on ESA:n erityinen, melko harvoin toistuva ideakutsu. Siinä avaruusjärjestön tiedeohjelma pyytää uusia ideoita ohi normaalien missioehdotuskäytäntöjen. Normaaleissa missioehdotuksissa kaikkien käytettävien tekniikoiden pitää olla lähes lentovalmiita (TRL-taso 6), mutta ideakutsussa tällaista vaatimusta ei ole. Haluamme saada ESA vakuuttuneeksi siitä että sähköpurjeen avulla voidaan toteuttaa missio joka tuottaa enemmän asteroiditiedettä kuin kaikki aiemmat asteroidilennot yhteensä eli tuottaa lähikuvia ja spektrejä sadoista asteroideista. Verrattuna muihin ESA:n tiedemissioihin ehdotus on myös rahallisesti halpa koska laukaisumassa on pienin saatavilla oleva ja identtiset piensatelliitit voidaan rakentaa sarjatyönä.

lauantai 18. kesäkuuta 2016

Lyhyt sähköpurjevideo Ilmatieteen laitokselta

Ilmatieteen laitos on tuottanut sähköpurjeesta lyhyen videon, tällä kertaa englanniksi. ^

Sähköpurje esiintyy lyhyesti myös toisenkin, revontuliaiheisen videon loppupuolella:

keskiviikko 15. kesäkuuta 2016

Sähköpurje lentää myös Sodankylän elokuvajuhlissa!

Sini Iron Sky 2-leffan kuvauksissa: kohta pötkitään dinosauruksia karkuun!
Sodankylän elokuvajuhlilla järjestetään ensi kertaa Keskiyön auringon matinea aiheenaan Avaruus ja ilmasto elokuvissa. Sodankylän Geofysiikan Observatorion johtaja, professori Esa Turunen, Ilmatieteenlaitoksen tutkija Sini Merikallio ja Helsingin yliopiston meteorologian professori, akatemiaprofessori Timo Vesala luennoivat mm. ilmastonmuutoksesta, revontulista, avaruusfysiikasta ja tähtitieteestä tunnettuja elokuvia apunaan hyödyntäen

Sähköpurje on mukana menossa, liitelemässä osana Sinin esitystä!! Paikkana on Sodankylän kunnan valtuustosali, Jäämerentie 1, lauantaina 18.6. klo 12.30-16.30 ja sisäänpääsy on vapaa. Matinea myös simultaanitulkataan englanniksi.

 Ilmatieteen laitoksen tiedotus tapahtumasta.

keskiviikko 13. huhtikuuta 2016

Sähköpurje-efektin mittaukset NASA MSFC:ssä alkavat

NASA Marshall Space Flight Center on nyt rakentanut plasmakammiokoejärjestelyt valmiiksi, tavoitteena mitata sähköpurje-efekti plasmakammiossa. Asiasta kertoo tarkemmin NASA:n lehdistötiedote. Kammiossa virtaava plasma vastaa tiheydeltään ja nopeudeltaan suunnilleen matalaa Maan kiertorataa (low Earth orbit, LEO), ei aurinkotuulta, koska aurinkotuulen simulointiin Maan päällä tarvittaisiin satojen metrien kokoinen kammio.

NASA MSFC:n sähköpurjetestissä käytettävä plasmakammio avattuna.


Työ on osa NIAC:n (NASA Innovative and Advanced Concepts) rahoittamaa hanketta jonka ensimmäinen vaihe päättyi viime vuonna ja nyt ollaan kakkosvaiheessa jonka tärkeän osan muodostaa plasmakammiokoe.

NASA MSFC:n Bruce Wiegmann, alabamalainen sähköpurjemies, pitelee HERTS2-projektin lankoja käsissään.

keskiviikko 23. maaliskuuta 2016

Sähköpurjekolumni 38

Sähköpurjekolumni 23.3.2016

Aalto-1 odottaa laukaisua, eikä siitä tällä kertaa sen enempää. Hyötykuormamme luovutettiin pääsiäisenä 2015 eli se on odottanut laukaisemista noin vuoden.  ESTCube-1 ja Aalto-1 ovat olleet esillä sähköpurjekolumnissa monesti, viimeksi numerossa 2/2015.

Kirjoitan tällä kertaa vähän yleisemmästä aiheesta eli cubesat-ohjelman aikaansaamisesta. Cubesatin ajatuksena on olla halpa, helppo ja nopea tapa päästä avaruuteen. Yksikin cubesat on hyvä juttu, mutta vasta jatkuvasti pyörivä cubesat-ohjelma alkaa tuottaa sellaisia hyötyjä joiden takia formaatti luotiin. Näitä hyötyjä ovat uusien teknisten ratkaisujen nopea testaaminen, järkevä riskitaso, uusien avaruusinsinöörisukupolvien kouluttaminen ja tuoreen tekniikan saaminen taivaalle operatiiviseen käyttöön.

Cubesat-hankkeet kuitenkin luisuvat helposti takaisin vanhaan tekemisen malliin, jossa satelliittia tehdään monta vuotta, se on melko monimutkainen ja jossa "epäonnistua ei saa koska tämä maksaa niin paljon" (muistan kuulleeni tämän lauseen jossain Aalto-satelliitin palaverissa vuosia sitten). Avaruustekniikan yksi peruslaki on kuitenkin että jos epäonnistuminen ei ole vaihtoehto, onnistuminen voi tulla hyvin kalliiksi.

Mitä tiheämmin ohjelmassa laukaistaan, sitä pienempi peikko yksittäinen epäonnistuminen on ja sitä enemmän riskejä voidaan ottaa, sitä nopeammin satelliitti voidaan rakentaa ja sitä halvemmaksi hanke tulee. Jos sykli on nopea, taivaalle saadaan tuoretta eli tehokasta tekniikkaa ja satelliitin tulos saadaan nopeasti käyttöön. Jos on kyse opiskelijasatelliitista, opiskelijatiimiä ei tarvitse vaihtaa kesken hankkeen, jolloin opiskelijoiden motivaatio on korkea koska he pääsevät operoimaan itse rakentamaansa laitetta avaruudessa. Sitäpaitsi rakentaja on maailman paras asiantuntija omansa laitteensa operoinnissa.

Jotta cubesat-ohjelma syntyisi, sellaisesta pitää tehdä päätös. Pitää päättää suuntaviivat: kuinka usein ja minkä kokoisia satelliittia laukaistaan ja/tai laukaisuihin käytettävä vuosibudjetti, joka on voimassa toistaiseksi. Jos laukaisubudjetti on pieni, satelliitteja kannattaa pienentää mieluummin kuin tinkiä laukaisutiheydestä. Jos rahaa on vielä vähemmän, pienennetään satellitteja lisää. Alarajaa ei ole: maailmalla puhutaan CD-levyn kokoisista taskusatelliiteista ja 5 cm kuutioista joita mahtuu normaalin 1-U cubesatin tilavuuteen 8 kappaletta.

Cubesatteja ovat jo laukoneet monet maat ja yliopistot, ja Suomi on tässä asiassa enemmänkin viimeisten kuin ensimmäisten joukossa. Hyvin toimivia nopean syklin cubesat-ohjelmia on maailmassa kuitenkin edelleen melko harvassa, joten niiden saralla eturintamassa on vielä tilaa.

Jos cubesat-laukaisujen ostamiseen käytettäisiin yksi prosentti Suomen vuotuisesta ESA-jäsenmaksusta eli 200,000 euroa, sillä saisi aikaan jo jotain järkevää. Rahasta ei tämä asia oikeasti ole kiinni, mutta virallinen päätös on tarpeen jatkuvuuden takia.

keskiviikko 27. tammikuuta 2016

Sähköpurjekolumni 37

Sähköpurjekolumni 27.1.2016

Lyhyen tähtäimen aurinkotuulisäätä ennustetaan Auringon ja Maan välistä Lagrangen L1-pistettä kiertävillä luotaimilla. Alukset mittaavat aurinkotuulen plasmatiheyttä, nopeutta ja magneettikenttää 1.5 miljoonaa kilometriä ylävirtaan Maasta, mikä aurinkotuulen nopeudesta riippuen vastaa 0.5-1 tunnin viivettä. Tämä on hyödyllistä, mutta ennakointiaika saisi olla vähän pitempi.  Sähköpurjetta käyttämällä luotain voisi hieman vastustaa työntövoimallaan Auringon painovoimaa ja sijaita lähempänä Aurinkoa, jolloin ennakointiaika voisi pidentyä enimmillään kaksinkertaiseksi. Aurinkotuulen plasmatiheys selviää mittaamalla jännitteellisen sähköpurjeliean keräämä sähkövirta, aurinkotuulen nopeus voidaan laskea aluksen kiihtyvyysanturin mittaamasta sähköpurjeen työntövoimasta, ja aurinkotuulen magneettikenttä voidaan mitata puomin päässä olevalla pienellä magnetometrillä. Kaikki tämä mahtuu periaatteessa 3-U -cubesattiin. Radioyhteyden kommunikaatioetäisyys on pitkä, mutta koska alus pysyy koko ajan Aurinkoon ja Maahan nähden jokseenkin samassa asennossa, kommunikaatio voitaneen hoitaa litteillä satelliitin takapintaan kiinnitetyillä patch-antenneilla. Yhdellä sähköpurjeliealla varustettu muutaman kilon painoinen cubesat pystyisi siis ennustamaan aurinkotuulta kaksi kertaa pitemmälle tulevaisuuteen kuin olemassaolevat menetelmät, jotka lisäksi ovat kertaluokkaa kalliimpia.

Jos halutaan ennustaa aurinkotuulta vuorokausien päähän tai jos halutaan ennustaa mitä tahansa Auringon röntgen-, UV- ja energeettisten hiukkasten emissioita, pitää mitata itse Aurinkoa ja pyrkiä ennustamaan sen purkauksia. Tässä on monia haasteita, joista yksi on että koska Auringon pyörähdysaika on vajaa kuukausi, meiltä piilossa Auringon takana saattaa olla kehittymässä uutta toimintaa. Tähän tarvittaisiin periaatteessa joukko Aurinkoa kiertäviä luotaimia. Vähän halvempi vaihtoehto on panna luotain Auringon ja Maan Lagrangen L5-pisteeseen, joka muodostaa Auringon ja Maan kanssa tasasivuisen kolmion. Luotain näkee silloin Auringon 60 astetta eri kulmasta kuin Maa ja havaitsee Auringon takaa esiin vyöryvät seudut yli 4 vuorokautta aiemmin kuin Maa.  L5-piste on vakaa, joten luotaimen pitäminen siellä ei vaadi työntövoimaa. Luotain voitaisiin viedä paikalleen perinteisellä menetelmällä tai sähköpurjeella.

Revontulet, indusoituvan sähkökentän aiheuttamat uhat maanpäälliselle sähköverkolle ja säteilyriskit satelliiteille riippuvat enimmäkseen aurinkotuulesta, jota siis voidaan tällä hetkellä ennustaa tarkasti 0.5-1 tunnin päähän (riippuen aurinkotuulen nopeudesta) ja sähköpurjeella 1-2 tunnin päähän. Häiriöt radioliikenteessä puolestaan johtuvat ionosfäärin plasmatiheyden kasvusta, joka riippuu revontulista ja Auringon suorasta UV-säteilystä.  Säteilyriskit Kuuhun tai Marsiin matkaaville astronauteille ja korkealla lentäville lentokoneille tulevat pääosin Auringon hiukkaspurkauksista, jotka samoin kuin UV-säteily ovat äkillisiä, suoraan Auringon pinnan toiminnasta johtuvia ilmiöitä.

Avaruussään ennustaminen nojaa siis yhtäältä Maan ylävirran aurinkotuulen mittaamiseen ja toisaalta Auringon pintatoiminnan seuraamiseen eri havaintosuunnista. Sähköpurjeella olisi paljon annettavaa ensimmäiseen ja merkittävästi myös jälkimmäiseen.